

STP Engine, a C-based Programmable HW Core featuring Massively Parallel and Reconfigurable PE Array:

Its Architecture, Tool, and System Implications

2009/04/17

Masato Motomura 1st SoC Operations Unit NEC Electronics Corporation

Outline

- Needs for programmable HW core
- STP engine
 - Architecture
 - Execution model
 - Tool
- XBridge: a 90nm system LSI with STP engine
- Demonstration
- Conclusion

As On-Chip System Integration Evolves ... NEC

- An LSI development project
 - Requires longer time,
 - Demands larger amount of engineers,
 - Costs more expense,
 - Faces severer risks, (or failure cost)

generation by generation

- As such, an SoC (System-on-Chip) requires larger volume of shipments
- But the system integration itself naturally means dedication to some specific product category
 - => "SoC dilemma"

To be HW, or be SW ...

Our Solution: STP Engine

- ⇒ To solve the "SOC dilemma"
- ⇒ To fill the gap between HW and SW

- It is a programmable HW core integrated in an SoC
- It can load a set of pseudo HW configurations
- It reconfigures itself to one of those configurations during runtime
- Programming tool is C-based
 - C is the only common language for HW and SW engineers

STP Engine: Concept

DRP Array

- Numerous numbers of processing and memory elements
- Tasks are mapped onto the array both in space and time domains
- Parallel and customized processing leads to high performance

Tightly coupled to hide mutual latency

DMA Engine

- Autonomous mechanism to stream input/output data
- Under the control of both CPU and DRP array through a set of API
 - Start, halt, re-load, read, etc.

STP Engine: Reasoning

- STP Engine := <u>Stream Transpose Engine</u>
 - An Engine that can process, convert, manipulate, etc. stream data, e.g., still image/video data and NW packets
- DRP Array := <u>D</u>ynamically <u>Reconfigurable Processor Array</u>
 - Base architecture was presented in MPF 2002 and SOC 2003
- DMA Engine plays a key role
 - SW tasks that require HW assists tend to be stream-oriented
 - It makes DRP array programming a lot easier
 - It provides a familiar look of "intelligent DMA" to CPU

DRP Array

Processing Element (PE)

- Byte-oriented ALUs
- Byte-width vertical/horizontal buses and registers
- Several tens of configuration sets

State Transition Controller (STC)

Controls "dynamic reconfiguration"

Data Memory (Mem)

- Dual port
- Single port

16b Multiplier (MPY)

Execution Model (1): Spatial Mapping

in C-langage

STP Tool

DRP Array

1. Generates a HW config. from the source code

2. Spatially maps onto the array

Execution Model (2): Dynamic Reconfiguration

Execution Model (3): Dynamic Loading

- Reload HW configurations from external memory
 - Can change into totally different HW
 - Can timeslice a huge application into a chunk of configuration sets
 - Can virtualize HW, in other words
 - Etc.

Configuration Time: Order of 100us

Application Domain

STP Engine

- Parallel Processing
 - Data parallel, pipeline, task parallel, etc
- Customized Processing
 - Datapath customized for a given task under area-performance tradeoff

Major Application Categories

- Still image processing
 - Image filter, transformation
 - Image scaling
 - Compression/decompression
 - Image recognition
- Video processing
 - Video stream multiplexing
 - Compression/decompression
- Packet processing
 - Forwarding
 - Access control
 - Contents search
- Others
 - Entropy coding
 - Encryption

It works well when a given application is rather complex, and has mixture of different kinds of parallelism

STP Tool – Based on Behavioral Synthesis Tech.

down flow

Compilation Steps (1)

Compilation Steps (2)

CDFG (2-ALU Case)

This way, space-domain mapping and time-domain partitioning is handled on DRP array

XBridge: System LSI with STP Engine

- 90nm process tech.
- 960pin 0.8mm pitch FCBGA (27mm)
- Operation Clock:
 - System: 266MHz
 - STP Engine: 33-100MHz
- Total power: 2W(Worst)

STP Engine: Detailed Block Diagram

STP Engine

DRP Array

RESOURCES

- ■PE x 256
 - •@8b ALUx2
 - @8b Regx2
- ■16b MPY x 32
- ■2p SRAM x 56
 - •@512B
 - Total 28KB
- ■1p SRAM x 16
 - •@8KB
 - Total 128KB
- Contexts x 32

Ingress/Egress Data Streaming

External Memory Access

XBridge: System Application

XBridge Evaluation Kit

Demonstration

Noise Reduction (STP vs. CPU)

Performance Comparison

STP Engine Used in Real Products

- Integrated in our customer's ASIC for professional cam coder
 - STP Engine (90nm) is embedded as an generic accelerator of the CPU
 - Implemented functions:
 - Stream Packet Mux/DeMux
 - Audio Encode
 - Intelligent DMA
 - **■Video Codec, etc**

Nov. 2007

July 2008

July 2008

Paradigm Shift in SoC Design

Customer (Application dev.)

LSI vendor (Chip design)

Isolation of application development from logical/physical chip design

=> Key factor for resolving "SoC dilemma"

STP Engine as a "Many Core"

- Conventional many-core programming issues
 - Parallel programming is hard
 - Automatic parallelizing compiler is really hard
 - Rewriting, for different # of cores, is inevitable
- STP Engine challenges these issues by using the power of behavior synthesis technology
 - "Compilation into HW configuration" is the key differentiation
- When using STP Engine,
 - Parallel programming task becomes just as simple as writing a straight forward, single-process C program
 - The tool automatically parallelizes loops, branches, tasks, etc.
 - Rewriting, for different array size, is not necessary (only to put different constraint)

Spatial Mapping Example: Image Filter

Mapped onto DRP Array

- Multiply: x25
- Addition: x24
- Division: x1

In one cycle

- Process 5 lines one time
- Parallel data access
- Pipelined processing
- 1 pixel per 1 cycle

参考データ: デモ画像サイズ

■ Filter(9x9フィルタ+反転+二値化)の画像情報

momiji.pgm	もみじ	1904x1520
murasaki.pgm	フリージア	640x 512
siro.pgm	アネモネ	768x 614
sakura.pgm	桜	717x 573
mejiro.pgm	メジロ	832x 666

■ Bicubic**の画像情報**

momiji.ppm	もみじ	712x 566
sakura.ppm	桜	640x 512
siro.ppm	アネモネ	640x 512
tori.ppm	ユリカモメ	368x 288
mejiro.ppm	メジロ	640x 512
yakei.ppm	夜景	640x 512